XXIV World Congress of Neurology – Dubaï, October 27-31 2019 Teaching Course 12: NEUROMUSCULAR DISEASE DIAGNOSIS AND TREATMENT OF HEREDITARY NEUROPATHIES AND MOTOR NEURON DISEASE

Early Recognition of Amyloid Neuropathy

with a focus on hereditary transthyretin amyloidosis (hATTR)

Violaine PLANTE-BORDENEUVE Department of Neurology – Hopital Henri Mondor East Paris University - France

Institut national de la santé et de la recherche médicale

UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

Disclosures

- Scientific Advisor for the development of the THAOS database (Pfizer Inc.), without financial support
- Pfizer and Alnylam supported expenses with travel and attendance to several scientific meetings (2016–2019)
- Consultant for Pfizer, Alnylam and Ionis Pharmaceuticals
- Has spoken on behalf Prothena, Alnylam and Ionis/Akcea at scientific meetings and received financial compensation

Learning objectives

- Have an overview of the the amyloid polyneuropathy with a focus on the phenotypic and genotypic picture of the familial transthyretin amyloidosis (hATTR-PN)
- Get awareness on the therapeutic approaches available in this condition with a need to treat as early as possible
- Recognize the early clinical features of the amyloid polyneuropathy
- Learn the role of the neurophysiological tools and the skin nerves biomarkers at an early stage of the neuropathy
- Learn when and how to organize a multidisciplinary approach of the asymptomatic gene carriers to reach early recognition of hATTR-PN

Hereditary Transthyretin Amyloid Polyneuropathy (hATTR-PN): a devastating disease

- Length-dependent axonal sensory-motor and autonomic polyneuropathy, associated with systemic manifestations
- Progressive amyloid deposition of TTR fibrils in organs

Planté-Bordeneuve et al. *Lancet Neurol* 2011, 10: 1090-1097; Adams et al. *Nat Rev Neurol* 2019, 15: 387-404

hATTR-PN: the pheno-genotypic spectrum

Autosomal dominant transmission, Gene TTR > 140 pathogenic variants

- Significant geographic variation
- Variable age of onset (AO)

hATTR-PN: an overview of the diagnosis nowdays

hATTR-PN: a disease now treatable

- Major therapeutic advances in the past decade
- Available treatments aim to prevent TTR amyloid deposition in organs and halt the progression of symptoms

* hATTR-CM: hereditary transthyretin amyloid cardiomyopathy

Ericzon et al. Transplantation 2015, 99: 1847-1854; Coelho et al. J Neurol 2013, 260: 2802-14; Waddington-Cruz et al. Amyloid 2016, 23: 178-183; Planté-Bordeneuve et al. J Neurol 2017, 264:264-268 Adams et al. NEJM 2018, 379: 11-21; Benson et al. NEJM 2018, 379: 22-31; Maurer et al. NEJM 2018, 379:1007–1016

hATTR – We should intervene much earlier in order to preserve the neurological function

The early recognition of hATTR is now a real challenge

Early recognition of the hATTR neuropathy: clinical aspects

- Neurological examination including assessment of all sensory modalities
 - Temperature, pain
 - Vibration, position sense
- Autonomic manifestations
 - Can be difficult to assess
 - Test blood pressure in recumbent/standing position
 - CADT questionnaire to review the main autonomic manifestations

Table 1 Compound Autonomic Dysfunction Test (CADT)

	4	3	2	1	0	
Postural hypotension	No	Asymptomatic	Lipothymia	Postural syncopes	Bedridden	
Nausea preventing normal feeding, vomiting	No	Nausea/Slow digestion	Vomiting: Less than once a week	Vomiting: More than once a week	Vomiting: Daily	
Diarrhea/Constipation	No	Once a month	Once a week	More than twice a week	Daily	
Sphincter disturbances	No	Dysuria	Dysuria + episode of incontinence	Intermittent bladder catheterization	Permanent bladder catheterization	
Erectile dysfunction	No	Difficulties	Impotency			
Total			Denier C et al. J Neurol. 2007;254:1684-16			

	NIS (244 points) Reflexes (20)	mPND	
Useful Scores :	Sensation (32)	0	Normal
- Neuropathy Impairment Score (NIS)	Motor strength/weakness	I	Sensory disturbances in the lower limbs, preserved walking capacity
 Modified Peripheral Neuropathy Disability (mPND) Body Mass Index (BMI) 		п	Impaired walking, no need of aid or stick
- Karnofsky Performance status Scale (KPS)	(192)		Walking with 1 stick
		lllb	Walking with 2 sticks
Denier C et al. J Neurol. 2007;254:1684-1688; Coelho et al. Neurology 2012 785-792.		IV	Wheelchair or confined to bed

Early recognition of the hATTR neuropathy: neurophysiological tests

- Large nerve fibres
 - Motor and sensory nerve conduction in all 4 limbs
 - Normal at an early stage
 - A progressive decline of SNAP in the lower limbs may be a red flag !
- Small nerve fibre tests may be helpful at an early stage

- > Threshold measurement
- > Method of limits, levels,...
- > Investigates A δ (cold) or C fibres (warm)

Feet ESC

Asympt.

controls

P<0.001

Castro J et al. Clin Neurophysiol. 2016;12:2222-2227; Lefaucheur JP et al. Clin Neurophysiol. 2018;129:1565-1569.

Valsalva maneuver,...

Investigates cardiac

parasympathetic innervation

 \geq

Small Nerve fibers assessment Early neurophysiological markers....

HRV: heart rate variability, NCS: nerve conduction study, LEP: laser evoked potential, QST: quantitative sensory testing, SSR: sympathetic sensory testing

J Neurol DOI 10.1007/s00415-012-6816-8

ORIGINAL COMMUNICATION

Neurophysiological markers of small fibre neuropathy in TTR-FAP mutation carriers

Jean-Pascal Lefaucheur · Sophie Ng Wing Tin · Philippe Kerschen · Thibaud Damy · Violaine Planté-Bordeneuve

Fig. 1 The various combinations of small-fibre neurophysiological test results in the 11 patients presenting at least one abnormality of these tests. *A* abnormal result, *N* normal result. *RRIV* RR interval variation, *SSR* sympathetic skin response, *QST* quantitative sensory testing, *LEP* laser-evoked potentials. Only SSR, QST, and LEP data of the lower limbs are presented

Early recognition of the hATTR neuropathy: skin biomarkers

- To measure intraepidermal nerve fiber density (IENFD)
 - In the frame of expert teams
- To detect amyloid deposits

RESEARCH ARTICLE

ANN NEUROL 2017;82:44-56

Cutaneous Nerve Biomarkers in Transthyretin Familial Amyloid Polyneuropathy

Gigi J. Ebenezer, MBBS, MD,¹ Ying Liu, MD, PhD,¹ Daniel P. Judge, MD,² Kelly Cunningham, MS,¹ Shaun Truelove, PhD,³ Noel D. Carter, MLS,¹ Blessan Sebastian, BS,¹ Kelly Byrnes, MS,¹ and Michael Polydefkis, MD, MHS¹

.

	TI	R	Controls			
Characteristic	TTR-FAP	TTR-noPN	Healthy	Disease	AL	
No.	20	10	20	20	2	
Skin biopsy + amyloid, No.	14/20	2/10	0/20	0/20	2/2	
Age, yr, median, range	65, 27-76	47.5, 17-83	58, 30-72	59, 30–73	70	
Female, No. (%)	7 (35)	8 (80)	7 (35)	7 (35)	2 (10	
V30M mutation, No. (%)	13 (65)	5 (50)				
NIS-LL, mean [SD]	31.8 [23.2]	4.4 [1.8]	0.2 [0.2]	16.0 [3.6]		
NIS sensory score, mean [SD]	11.3 [5.9]	1.6 [2.9]	0.2 [0.2]	15.5 [3.5]		
IENFD, fibers/mm, mean [SD]						
Distal leg	6.4 [11.1] ^a	14.6 [12.6] ^b	16.0 [6.9]			
Proximal thigh	14.8 [12.3] ^c	22.1 [12.0]	23.9 [7.1]			

*p < 0.0001, TTR-FAP vs healthy controls

p < 0.05, TTR-FAP vs TTR-noPN.

p < 0.05, TTR-FAP vs healthy controls.

^dp < 0.001, TTR-FAP vs healthy controls.

AL = light-chain amyloidosis; FAP = familial amyloidotic polyneuropathy; IENFD = intraspidermal nerve fiber density; NIS = Neuropathy Impairment Score; NIS-LL = NIS in the Lower Limbs; noPN = without peripheral neuropathy; PMNFD = pilomotor nerve fiber density; SD = standard deviation; SONFD = sweat gland nerve fiber density; TTR = transthyretin.

ANN NEUROL 2019;85:560-573

Skin Nerve Pathology: Biomarkers of Premanifest and Manifest Amyloid Neuropathy

RESEARCH ARTICLE

Chi-Chao Chao, MD, PhD,¹ Hsueh-Wen Hsueh, MD,¹ Hung-Wei Kan, PhD,² Chun-Hua Liao, MD,² Hao-Hua Jiang, MS,² Hao Chiang, PhD,² Whei-Min Lin, MS,² Ti-Yen Yeh, PhD,² Yea-Huey Lin, BS,¹ Ya-Yin Cheng, MS,² and Sung-Tsang Hsieh, MD, PhD ©^{1,2,3,4,5}

Penetrance

TTR gene carriers monitoring for an early diagnosis: when and how to do ?

- The monitoring of asymptomatic TTR gene carrier (TTR-AGC) is the main option to detect first symptoms
 - TTR presymptomatic gene testing performed in the frame of genetic counselling by a multidisciplinary team
- Penetrance studies give insights on the appropriate time to monitor TTR-AGC
 - Estimates the risk of being affected for TTR gene mutation carriers according the age

Age

- In hATTR-Val30Met kindreds of different origin :
 - Incomplete penetrance at age 80 y-o, in all areas
 - Variable risks at intermediate ages, increasing
 - From 25-30 y-o in Portuguese or Brazilian carriers
 - After 45-50 y-o in French and Swedish carriers

Proposed tools to assess TTR-AGC A multidisciplinary approach is necessary

Neurological examination

- All sensory modalities
- Autonomic survey

Scores:

- Total NIS: 0-24
- mPND: 0-IV

Cardiac*

- Electrocardiogram,
- Biomarkers: Nt-proBNP, troponin
- Echography: Global strain
- MRI ?
- MIBG scintigraphy

And...

- Non-invasive biopsy (skin, fat...) and / or HMDP-Tc99 Scintigraphy
- At baseline and/ or if abnormal testing

Neurophysiological investigations

- Large fibres
- Nerve conduction studies
- Small fibres tests
- Laser evoked potentials
- Quantitative sensory testing
- ESC/ Sudoscan
- o HRdb

Other

- mBMI
- Renal
- o microalbumiuria
- 。 serum creatinine,
- glomerular filtration rate
 - Ophtalmologic examination

Electrochemical skin conductance (ESC); Heart rate variability to deep breathing (HRDB), magnetic resonance imaging (MRI); modified body mass index (mBMI)

Schmidt H et al. Muscle & Nerve, 54: 353-360 (2016); Obici L et al. Curr op Neurol 29, Supp 1, S1-S8 (2016); Conceiçao I et al. Amyloid 2019, 26 (1): 3-9; personnal experience * Maurer M et al. Circ Heart Fail 2019, 12: e006075; Piekarski E et al, Eur J Nucl Med 2018, 45: 1108-18; Gillmore J et al. Circulation 2016, 133: 2404-2412

Case study: Mr R. 60 years old

- Ask for ATTR presymptomatic genetic test
- Family history: the patient's mother died of documented TTR-FAP in 2010
 - Diagnosed at 76 years old, 4 years after the inaugural symptoms
- One maternal uncle died at 74 years of age of « amyloidosis »

Genetic couselling: TTR genetic testing showed heterozygous ATTR- Ille107Val

Death: 74 y

- Baseline evaluation
 - Surgery for carpal tunnel syndrome (2005)
 - Neurological examination: normal
 - Nerve conduction studies and small-fibre neurophysiological tests
 - (*LEP, QST, ESC, HRDB): normal
 - Blood tests
 - Cardiac workup: normal
- Recommended follow up every 2 years in an expert center

Case study: Follow up evaluation (2015)

- Intermittent numbness in his feet, no other complains, active
- Neurological examination:

- Isolated thermoalgic sensory loss (NIS =2)
- CADT : 2 (intermittent diarrhea)
- Walk unlimited (mPND = I), stable weight (BMI = 24.6)
- Cardiac work up; Blood tests all normal
- Salivary gland biopsy: normal, skin biopsy positive AD
 - Final diagnosis: hATTR sensory neuropathy

 Nerve conduction studies - small nerve fibers tests

2010 2015 SNAP (µV) Sup. peroneal 26 17 n. 25 Sural n. 39 **Sudoscan** Palm Ν Ν Feet Ν Ν LEP Hand Ν Ν Feet Ν Α QST (Heat/Cold) Hand Ν Ν Feet Ν Α **HRDB** Ν Α

Case study: Mrs LEM..., 56 y-o

Family history :

- Her elder brother first diagnosed with ATTR-Ser77Tyr (2015)
 - Mixed cardiac and neurologic phenotype, onset 57 y-o,
 - Diagnosis delay 3 years, now treated
- Her father died at 74 y-o , her mother, age 86 y-o is healthy, no history suggesting ATTR
- **2017**, her 2nd brother, 58 years presented a syncopae
 - Subsequently diagnosed with a hATTR-Ser77Tyr hypertrophic cardiomyopathy
 - Work up showed a mild sensory axonal neuropathy with amyloid deposits on salivary gland biopsy
- 2018: Mrs Lem. 56 y-o, asked for genetic counselling and TTR genetic test
 - Heterozygous ATTR-Ser77Tyr

- Advised to perform a baseline assessment
 - Relevant Past medical history: carpal tunnel syndrome surgery (2010), investigated (2015) for pains in her lower limbs (cramps), knees arthralgia : Negative work up (biological tests, NCS, radiography), diagnosis of «fibromyalgia»

Case study: Mrs LEM..., ATTR-Ser77Tyr carrier: assessment

- Presently: intermittent pains in her lower limbs, worse with effort, avoid to walk on long distances, stopped all sports
 - Good general health, BMI= 19.3 kg/m², autonomic survey^{*}, blood pressure: normal
- Examination, nerve conduction study (NCS) and small nerve fibre tests (SNFT)
 - Strength: normal; reflexes: weak in her lower limbs
 - Sensation: vibration decreased in toes, position sense and light touch normal
 - Thermo-algic sensation:

NCS	3	SNFT					
Lower limbs	SNAP (µV)	Site	Sudoscan	LEP	QST	HRDB	
Sup. peroneal nerve	35	Feet	Ν	Ν	N	A	
Sural nerve	30	Hand	N	Α	Ν		

- Biological tests, NT-proBNP, troponin: normal
- Salivary gland + skin biopsies: Normal
- Cardiac work up: normal except

99mTc-HMPD Scintigraphy: cardiac hyperfixation

Final diagnosis: ATTR-Ser77Tyr polyneuropathy and cardiomyopathy

Conclusions - Take home messages

- hATTR polyneuropathy is a severe systemic disease now treatable
- Early diagnosis and treatment is a real challenge in hATTR, to stop the disease progression and preserve the neurological function
- To this end, a careful clinical evaluation is necessary including the assessment of all sensory modalities along with autonomic manifestations
 - Nerve conduction studies remain normal at the stage of pure small fibers sensory neuropathy
 - Neurophysiological and skin biomarkers can be contributive to detect alterations of small nerve fibers
 - Require a high level of expertise
- In this context, the identification, through genetic counselling and the monitoring of TTR asymptomatic carrier are desirable
 - Timelines adapted to the penetrance estimates
 - Using non invasive tests and a multidiciplinary approach to evaluate all facets of the disease
 - Importance of the cardiac evaluation
 - Non invasive biopsies, cardiac scintigraphy with bone tracers may help detect amyloid deposition

Thank you ...

Neurology

- Violaine Planté-Bordeneuve
- Thierry Gendre
- Abir Wahab
- Farida Gorram
- Neurogenetics
 - Benoît Funalot
 - Bérénice Hebrard
 - Jodie Drevet

Neurophysiology

- Jean-Pascal Lefaucheur
- Samar Ayache
- Tarik Nordine
- Neuropathology
- Jérôme Authier
- Cardiology
 - Laura Ernande
 - Geneviève Derumeaux
 - Thibaud Damy
- Nuclear Medicine
 - Emmanuel Itti